Onkologie. 2024:18(2):137-141 | DOI: 10.36290/xon.2024.025

Adverse effects of radiotherapy and radiobiological modelling

Zdeňka Pechačová1, Radka Lohynská2, Tomáš Kořínek3, 4, Tereza Drbohlavová1, Miloslav Pála1
1 Ústav radiační onkologie, 1. LF UK a Fakultní nemocnice Bulovka, Praha
2 Onkologická klinika, 1. LF UK a Fakultní Thomayerovy nemocnice, Praha
3 Státní ústav radiační ochrany, v. v. i., Praha
4 Ústřední vojenská nemocnice - Vojenská fakultní nemocnice, Praha

Radiotherapy is one of the most effective modalities of cancer treatment, however its application is associated with the risk of adverse effects. When planning radiation treatment, it is essential to spare the surrounding healthy tissues as much as possible to ensure an acceptable risk of toxicity and to maintain a good quality of life for patients. Radiation side effects result from diverse pathophysiological mechanisms and their severity is modulated by a variety of biological and clinical factors, as well as the applied dose, the size of the irradiated volume, radiomic characteristics or individual radiosensitivity. Based on these parameters, the risk of developing adverse effects of radiotherapy can be predicted by different methods. This paper offers a basic overview of the development mechanisms of radiation toxicity and the possibilities of predicting these effects by radiobiological tools - QUANTEC project, modelling based on EUD, NTCP and using artificial intelligence methods. Predictive models can strengthen the understanding of radiotherapy toxicity and in the future may contribute to individualize the treatment approach to maximize benefit and minimize toxicity.

Keywords: radiotherapy, adverse effects, radiobiology.

Accepted: April 19, 2024; Published: May 3, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pechačová Z, Lohynská R, Kořínek T, Drbohlavová T, Pála M. Adverse effects of radiotherapy and radiobiological modelling. Onkologie. 2024;18(2):137-141. doi: 10.36290/xon.2024.025.
Download citation

References

  1. Šlampa P, et al. Radiační onkologie. Praha: Maxdorf; 2021.
  2. Krupa P. Jak zvládnout nežádoucí účinky radioterapie. Onkologie. 2020;14(Suppl. C):24-29. Go to original source...
  3. Hynková L, Doleželová H. Nežádoucí účinky radioterapie a podpůrná léčba u radioterapie nádorů hlavy a krku. Onkologie. 2008;2(2):88-90.
  4. King SN, Dunlap NE, Tennant PA, et al. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer. Dysphagia. 2016;31(3):339-351. Go to original source... Go to PubMed...
  5. Lohynská R, Jirkovská M, Krátká Z. Časový faktor v radikální radioterapii nádorů hlavy a krku. Postgraduální medicína. 2020;2:115-120.
  6. Pechačová Z, Lohynská R. Klinická aplikace principů časového faktoru v radioterapii při kompenzaci přerušení ozařovací série. Klin Onkol. 2021;34(6):455-462. Go to original source... Go to PubMed...
  7. Lohynská R, Pechačová Z, Mazaná E, et al. Radioterapie a radiosenzitivní syndromy u mutací genů reparace DNA. Klin Onkol. 2022;35(2):119-127. Go to original source... Go to PubMed...
  8. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109-122. Go to original source... Go to PubMed...
  9. Kehwar TS. Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther. 2005;1(3):168-179. Go to original source... Go to PubMed...
  10. Bentzen SM, Constine LS, Deasy JO, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3-9. Go to original source... Go to PubMed...
  11. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10-19. Go to original source... Go to PubMed...
  12. Beetz I, Schilstra C, Burlage FR, et al. Development of NTCP models for head and neck cancer patients treated with three-dimensional conformal radiotherapy for xerostomia and sticky saliva: the role of dosimetric and clinical factors. Radiother Oncol. 2012;105(1):86-93. Go to original source... Go to PubMed...
  13. Sheikh, K, Lee SH, Cheng Z, et al. Predicting acute radiation induced xerostomia in head and neck Cancer using MR and CT Radiomics of parotid and submandibular glands. Radiation Oncology. 2019;14(1). Go to original source... Go to PubMed...
  14. Isaksson LJ, Pepa M, Zaffaroni M, et al. Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy. Front Oncol 2020;10. Go to original source... Go to PubMed...
  15. IBM Data and AI team. AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What's the difference? Available from: https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks. (cited 26.11.2023).
  16. Gabryś HS, Buettner F, Sterzing F, et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol. 2018;8:35. Go to original source... Go to PubMed...
  17. Chinnery T, Arifin A, Tay KY, et al. Utilizing Artificial Intelligence for Head and Neck Cancer Outcomes Prediction From Imaging. Canadian Association of Radiologists Journal. 2021;72(1):73-85. Go to original source... Go to PubMed...
  18. Bang C, Bernard G, Le WT, et al. Artificial intelligence to predict outcomes of head and neck radiotherapy. Clin Transl Radiat Oncol. 2023;39:100590. Go to original source... Go to PubMed...
  19. Wu VWC, Leung KY. A Review on the Assessment of Radiation Induced Salivary Gland Damage After Radiotherapy. Front Oncol. 2019;9:1090. Go to original source... Go to PubMed...
  20. Van Luick P, Pringle S, Deasy JO, et al. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head nad neck cancer. Sci Transl med. 2015;7:305ra147. Go to original source... Go to PubMed...
  21. Buettner F, Miah AB, Gulliford SL, et al. Novel approaches to improve the therapeutic index of head and neck radiotherapy: an analysis of data from the PARSPORT randomized phase III trial. Radiother Oncol. 2012;103:82-87. Go to original source... Go to PubMed...
  22. Rancati T, Fiorino C. Modelling radiotherapy side effects: practical applications for planning optimisation. Boca Raton, CRC Press/Taylor & Francis Group; 2019. Go to original source...
  23. Carbonara R, Bonomo P, Di Rito A, et al. Investigation of Radiation-Induced Toxicity in Head and Neck Cancer Patients through Radiomics and Machine Learning: A Systematic Review. J Oncol. 2021;2021:5566508. Go to original source... Go to PubMed...




Oncology

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.